The rate of optical tidal disruption flares Featuring implications for jet physics

Sjoert van Velzen Hubble Postdoctoral Fellow The Johns Hopkins University

Glennys Farrar, Suvi Gezari, James Guillochon, Elena Rossi, Heino Falcke, Elmar Körding, Dale Frail, Nadia Blagorodnova

Aspen Jan-22-2015

More motivation

- Probing the evolution of stellar orbits:
 - Rate with galaxy mass, redshift, type
 - IMBHS (Hagai Perets talk)
- Connection with the Galaxy:
 - Hyper velocity stars and Sstars (eg, Bromley+ 2012)
- General relativity:
 - Event horizon and spin

Non-trivial assignment

- Systematic search
- Well-sampled light curves
- Decent model light curves

Requirements to measure an event rate

- Completed surveys:
 - ROSAT (3)
 - GALEX (3)
 - SDSS Stripe 82 (2)
- Ongoing:
 - XMM (≈6)
 - PTF (3 or 4)
 - Pan-STARRS (2)
- Future surveys: Gaia, eROSITA, BlackGEM, Atlas, ZTF, LSST

SDSS Stripe 82

- 300 deg², 10 yr, *u,g,r,i,z*
- m < 22.5
- ~2 million galaxies
- 70 observations per galaxy
- Systematic search for all nuclear flares in galaxies

Background removal: supernovae

- Cut for nuclear flares: r < 0.2"
- Quality cut: 3 detections in *u,g,r*
- 42 nuclear flares
- No additional variability: 2 flares

(van Velzen+ 2011)

The SED of TDE is hot and slows little/no cooling

Detection rate in other surveys

 $\dot{N}_{\rm obs} \propto f_{\rm sky} F_{\rm lim}^{-3/2}$

Survey	F _{lim} (mag)	f sky	N _{obs} (1/yr)
GAIA	19	1	4
PTF	21.5	0.2	13
PS1 MD	24.5	0.0012	10
LSST	24.5	0.5	4000

(van Velzen+ 2011)

Theoretical setup for finding the rate

$$N_{\rm TDF} = \tau \sum_{i}^{N_{\rm gal}} \epsilon_i \dot{N}_i$$

$$\dot{N} = \frac{N_{\rm TDF}}{N_{\rm gal}\tau\,\epsilon}$$

"Effective-galaxy-year"

Models & Scenarios

- Correction for captures:
 - ► Exponential (a≈0.5)
 - \blacktriangleright Step-function at $10^8\,M_\odot$
- MBH scaling:
 - "Standard" (Harning & Rix 2008)
 - "Broken" (Graham 2012)
- Model light curves:
 - Empirical: SDSS and PS1
 - Model light curves

)

Effective-galaxy-year distribution

Results

- Uncertainty
 - Poisson: factor ~2
 - ▶ Due to M_{BH} scaling: ~2
 - Due to light curves models: 50%
 - Upper limit is model-independent

Model	Rate (yr ⁻¹ galaxy ⁻¹)	
Empirical	2.0 10 -5	
Lodato & Rossi	1.7 10 -5	
Guillochon et al.	1.9 10 -5	
Upper limit	< 2 10-4	

Comparison to theory

- Theoretical rate ~10 times higher
 - Dust obscuration
 - TDE physics: circularization
 - Occupation fraction (!)
- X-rays could help, however:
 - ► ROSAT: 9 x 10⁻⁶ yr⁻¹ (Donley+ 2002)
 - ► XMM: 2 x 10⁻⁴ yr⁻¹ (Esquej + 2009)

Dust in TDE host galaxies: Mid-IR light curve, 6 months after optical detection

Mendez & van Velzen (in prep)

A two-minute radio detour...

Implication for jetted TDEs

van Velzen+ 2013; Donnarumma+ 2015; Mimica+ 2015

The most common transient on the radio sky?

Frail et al. (2012), TDE jet rate from van Velzen et al. (2013)

Tidal disruption jets: two models

External model

(Giannios & Metzger **2011**; Metzger, Giannios, Mimica 2011)

- Inspired by GRB jets (eg, Granot & Sari 1999)
- Interaction of forward/reverse shock with environment
- On-axis or isotropic

- Internal model (van Velzen, Falcke & Farrar 2010; van Velzen, Körding & Falcke 2011)
 - Inspired by AGN jets
 - Emission from matter injected in the jet from the disk
 - Include accretion statetransitions
 - Function of inclination (Doppler boosting)

Follow-up observations: JVLA, 5 GHz, 10 µJy rms

- van Velzen et al. (2013):
 - followed-up all optical/UV TDE
 - No detections
- Bower et al. (2012):
 - Followed-up all X-ray TDE
 - Two detected, both from ROSAT (IC 3599 and RX J1420.4+5334)
 - Very unlikely to be TDE jets
- Soderberg et al. (in prep):
 - No detections

Off-axis light curves: conservative model

van Velzen+ (2013)

Conclusions & Outlook

- Jets from tidal disruptions:
 - Not common (<10 % of TDE)
 - Upcoming radio surveys could detect few per year
- Rate based on systematic search:
 - ► ~2 x 10⁻⁵ yr⁻¹ galaxy⁻¹
- Discrepancy with theory
 - Circumnuclear dust or something even more exciting?
- Combine X-ray, UV, optical surveys

Efficiency: catalog selection + difference imaging

Galaxy SEDs

Mendez & van Velzen (in prep)

Could there flares be supernovae?

- Not normal SNe: more blue, little cooling
- UV detection > 2 yr after the flare
- Based on geometry:
 - ► *P*(SN) < 2%
- New kind of "nuclear" core collapse SN?
 - Never observed before (?)
 - Would require factor 1000 suppression outside nucleus

TABLE 1LIGHT CURVE MODEL EFFICIENCIES & RESULTING OPTICAL TDF RATES.

Name	Mean efficiency (%)	$\begin{array}{c} \text{TDF Rate} \\ (\text{yr}^{-1}\text{galaxy}^{-1}) \end{array}$	
SDSS-only	0.13, 0.62	$< 1.5 \times 10^{-4}$	
PS1 events (10jh, 11af)	1.0	2.0×10^{-5}	
Phenomenological	1.4	1.5×10^{-5}	
$M_{\rm BH}$ scaling: Häring & Rix (2004)		Correction for Step-function	or captures: Exponential
Disk+Wind	0.83, 3.3	1.2×10^{-5}	1.7×10^{-5}
GMR14	1.2	1.8×10^{-5}	1.9×10^{-5}
$M_{\rm BH}$ scaling: Graham (2012)		Correction for captures: Step-function Exponential	
Disk+Wind	0.22, 1.5	2.1×10^{-5}	3.2×10^{-5}
GMR14	1.6	1.2×10^{-5}	1.3×10^{-5}

Could these flares originate from AGN?

- Flares are more blue than QSO (in their high-state)
- Host spectra show no sign of active black hole
- Flux increases very large: P(AGN)~10⁻⁷,10⁻⁵
- No additional variability: P(AGN)~10⁻⁶,10⁻⁵
- Radio non-detection: $<20\mu Jy, <10^{28}~erg~s^{-1}Hz^{-1}$

F

Flare selection: catalog cuts

Snapshot rate

Observations: flaring state spectrum (TDE2)

